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1. Inverse atmospheric transport modelling: first attempts



In January and February 2017, 131 was detected

throughout Europe; its origin is not fully

understooc
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Inverse atmospheric transport modelling: a three-step

problem

1. Input data

Numerical weather
prediction data:

2. Atmospheric transport

and dispersion modelling

ECMWE IFS: 3-hourly data
coarse-grained to
1° horizontal grid spacings

The Lagrangian particle
model Flexpart in backward

mode (Seibert and Frank,
2004)

lodine-131 observations:

Source-receptor
relationship:

28 detections from the Ro5

+ detections from the
CTBTO IMS radionuclide
network

Flexpart  calculates  the

source-receptor-sensitivities

M; for each observation y;:
Vi = M;jx;

3. Inverse modelling

A source term x; is found by minimizing a
cost function:

1

exp (EZ(log(yi +a) — log(Ml-jxj + a))z>

l
The optimisation is solved using a quasi-

Newton technique and does not require to
rerun Flexpart.

The inverse modelling is applied to each
grid box separately (single grid box
source).




Source |localization based on all available
observations (single source assumption)
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2. Direct atmospheric transport modelling: using release assumptions,

can we reconstruct the 131] detections?



Potential sources of the

131 detections

Table 1. Main *° Mo/"*'I Producers in Europe and Western 1000 - ' :
Russia ...',; - P <—Maximum estimate 342 GBq
maximum yearly mv ' <— Average estimate 70 GBq =
country authorized "*'T release to 3 10 4 o ) (estimate)
(town) company or institute the atmosphere (GBq) reference R <—Minimum estimate
Poland Nuclear Research 0.1 in 2016 24 :O 1 - —
(Otwock- Radioisotope Centre = MDA
Swierk) Polatom = ; MDA
> 2} ) MD: = : S =
Netherlands Mallinckrodt Medical 0.3 in 2017 25 = ol owest 30 GBq.y!
(Petten) BV 8. -
France UPRA (Cis-BIO 0.6 in 2013 26 o 001 7 0.3 GBq.y!
(Saclay) international) "-O: =
Belgium Institut national des 41.8 in 2011 10 —P: 0.001 - w—
(Fleurus) RadioEléments (IRE) P
Russia L. Ya. Karpov Institute 780 in 2015 21 0.0001 T T . T
(Obninsk) of Physical Chemistry Spontaneous  NPP chronic Incineration of ~ Radiopharma. Radiopharma.
(NIFKhI) fission of U releases sewage sludge authorized release incident release
Hungary Institute of Isotopes 1600 in 2011 27 (Jan-Feb 2017) (Oct-Nov 2011)
(Budapest) Ltd. (Iol) MDA: Minimum Detectable Activity usual range

Masson et al., (2018). Potential Source Apportionment and Meteorological Conditions Involved in Airborne 1311 Detections in January/February 2017
in Europe. Environmental Science & Technology, 52(15), 8488-8500.




Release assumptions:

Polatom, Mallinckrodt, UPRA following Table 1 of

IRE: 1 GBq/y ( )
lol: 100 GBq/y ( )

Karpov institute: 150 GBq/y

(

):
Case 1: three detections at
RN61 (12, 14, 18 January), one
detection at RN54 (13
January)
Case 2: six detections at RN61
(30, 31 January; 1,4,5, 6
February)
Case 3: four detections at
RN61 (17, 24, 25 February; 1
March)

I-131 release (GBq/y)
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Observation set

: area source
proportional to the population density,
totaling 30 GBq/y (population density
data: 1° resolution from the NASA EOSDIS
database; release amount based on Fig. 2
of Masson et al., 2018)
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Very poor agreement;
possible reasons:

Errors in the
meteorological data
Errors in the
atmospheric
transport and
dispersion
processes

Errors in the
emission
assumptions
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Outline

3. Effect of the meteorological conditions



Assessing the effect of meteorology directly

Essen

* The episode of 13| detections was associated
with strong temperature inversions that
deteriorate mixing in the lower troposphere
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in the meteorological data; however,
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Assessing the effect of meteorology indirectly

= Flexpart during one full year
2017

: area source with constant emission
|oroport|onal to the density population (as proxy for

Variation in
ocal SOUFCES) [r— concentration
: : only depends
* 3-hourly simulated concentrations are converted I ‘r’n”elfrolo o
into weekly simulated concentration (by : Japnciove
averaging and applying a decay correction) ;
= 51 simulated concentrations per station in 2017 :
= A is made for each station; the

simulated concentration is marked by ‘+" when a
detection took place



Certain detections took place when Flexpart
predicts a maximum influence from local sources

Activity concentration (microBg/m3)
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Results suggest that certain detections can be explained by exceptional
meteorological conditions rather than unusual emissions
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4. Inverse atmospheric transport modelling revisited



Source localization: subset of 9 observations that
can be explained by exceptional meteorological

conditions
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76.70
71.90
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3.02
2.29

Given the large
costs, the
detections are
possibly
originating
from multiple
local sources
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Source localization: subset of 11 observations
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Low minimum
cost; Polatom
seems possible
source for
these
detections
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Source localization: subset of 7 observations
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Low minimum
cost; Karpov
seems possible
source for
these
detections
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Conclusions

* In January and February 2017, 31| was detected throughout Europe; its
origin is not fully understood

* Determination of the origin is hard because there are many possible
sources with time-varying emissions = many more degrees of freedom
than observations

* Comparing simulated activity concentrations obtained from direct
modelling with observed activity concentration leads to a poor a%reement:
likely we have insufficient knowledge of the emissions, in particular related
to peak releases from local sources

* Results suggest that part of the detections can be linked to the exceptional
meteorological conditions

* Inverse modelling results suggest that part of the detections can be linked
to releases from Polatom and Karpov



