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Near-range atmospheric dispersion can be modelled on various ways

Ø Different treatments of atmospheric conditions and terrain effects

Do dose rate simulations benefit from improved physical descriptions?
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!# + % ⋅ '" = ' ⋅ )'" + *+(- − -/), ∀- ∈ 4 ⊂ ℝ7 (1)

with
": the concentration field [;</>7]
%: the wind field [>/@]
): the eddy diffusivity [>A/@]
*: the source strength [;</@]
-/: the source location [>]
4: the simulation domain

Step 1: solve " from equation (1) for the near range around the source

n buildings are omitted

n terrain and atmospheric conditions are incorporated through the choice of % and )

Methodology
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Model ! " methodology

Different choices of ! and " lead to different models
n Assume a neutral atmosphere
n Wind field is assumed to be uniform in the horizontal plane

Methodology
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Model ! " methodology
Gaussian model constant: 

# $ = #&
Pasquill-Gifford (PG)
Bultynck-Malet (BM)
(Tracer experiments)

Analytical solution from 
1

(MATLAB)

1 Yi C. 2008. Momentum transfer within canopies. J. Appl. Meteor. Climatol. 47: 262-275.
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Gaussian model constant: 

# $ = #&
Pasquill-Gifford (PG)
Bultynck-Malet (BM)
(Tracer experiments)

Analytical solution from 
1

(MATLAB)
Particle model power law: 

# $ ∝ $&.**
Taylor’s statistical 
turbulence theory

Solve SDE with Euler-
Maruyama scheme
(MATLAB)

Model ! " methodology
Gaussian model constant: 

# $ = #&
Pasquill-Gifford (PG)
Bultynck-Malet (BM)
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Analytical solution from 
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Particle model power law: 

# $ ∝ $&.**
Taylor’s statistical 
turbulence theory

Solve SDE with Euler-
Maruyama scheme
(MATLAB)

Vegetation canopy 
dispersion model

similarity scaling 
(>canopy)
≈ solve NS eqn1

(in canopy)

Standard Gradient 
Hypothesis

Finite volume method
(OpenFOAM)
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Step 2: calculate the ambient gamma dose rates "̇# due to the gamma energy released 

per disintegration $# %&' w.r.t. detector location () ∈ ℝ,

̇"# =
./012$#

44
555
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with

./ = 1.6×10:,GH ⋅ JK ⋅ %&':L a unit conversion factor
012: the absorption coefficient for air [O9/JK]

7: the buildup factor
0: the linear attenuation coefficient in air [O:L]

⋅ 9: the Euclidean norm

Kenis K, Vervecken L, Camps J. 2013. Gamma dose assessment in near-range atmospheric dispersion 
simulations. SCK•CEN Reports; No. ER-242. 1:26 p.
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n Dose rate measurements for 7 locations on SCK•CEN site (Mol, Belgium)
n Ar-41 releases from the BR1 through the chimney (60 m)

n Data was also distributed in context of the NERIS Atmospheric Dispersion 
Modelling (ADM) experiment (J. Camps, Dublin 2018 workshop)

SCK•CEN site
case study
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chimney

SCK•CEN forest
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Quantile = cut points that divide the range of a probability distribution into intervals with 
equal probabilities

Simulation of Ar-41 routine releases
Q-Q plot
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Gaussian models are 
biased + underestimate 
the observed variance

outliers ?

Particle  model seems 
to perform the best

Canopy model underpredicts
occurrence of dose rates 
> 120 !"#/ℎ

Gauss (PG) model is biased, 
but variance is correctly 
estimated
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Above 100 nSv/h: mainly underestimations

Simulation of Ar-41 routine releases
Outliers?
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Statistical measures [Chang & Hanna (2004)]: let the subscript ! denote the observations 
and " the predictions, then

VG = exp ln
,̇-,/
,̇-,0

1

, FAC5 = fraction of data that satisfy
1
5
≤
,̇-,/
,̇-,0

≤ 5

Additionally, also a hypothetical ground release (10 C) was assumed for the same 
meteorological data as for the stack release.

Findings

n Stack release: 75% < FAC2 < 90 %, FAC10 ≈ 100% (w.r.t. measurements)

Simulation of Ar-41 routine releases
Statistical measures
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Release 
height [m]

L̇M,N L̇M,O PQ [-] RSTU [-] RSTVW [-]

60 Gauss (PG) Canopy 1.20 0.94 1.0

10 Gauss (PG) Canopy 2.52 0.39 1.0
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Concentration discrepancy is much bigger close to the source than for dose rate
Ø concentration stronger influenced by terrain roughness modeling

Downstream calculations for a 2 km fetch
Ratio’s at ground level
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Black = concentration ratio
Red = dose rate ratio

60 m release (-)
10 m release (--)

Ratio = !"#$$ (&!)(")*+, if ≥ 1
Ratio = − (")*+,

!"#$$ &! if < −1
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n Higher roughness ⇒ concentration maximum closer to source
n Location of max. dose rate is stronger influenced by the source than by the max. 

concentration

Downstream calculations for a 2 km fetch
Ground profiles
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Low roughness: 
dose rate doesn’t scale with 
ground concentration

60 m release

Black = concentration
Red = dose rate

Canopy (-)
Gauss PG (--)
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The canopy and the Gaussian model produce quite different concentration 

distributions for both release heights

Downstream calculations for a 2 km fetch
Non-dimensional ground concentration distributions
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ground release

stack release
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Closer agreement between the models about the location and value of the max. 
dose rate than about the max. concentration!

Downstream calculations for a 2 km fetch
Discussion about the maximum values
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Max. conc. Location [m] Ratio [-]
Release 
height [m]

Canopy Gauss (PG) !"#$%&
'"())

60 238 1369 2.6
10 1 155 3.1

Max. dose Location [m] Ratio [-]
Release 
height [m]

Canopy Gauss (PG) !"#$%&
'"())

60 191 310 1.4
10 0.3 90 2.1

Max. conc. Location [m] Ratio [-]
Release 
height [m]

Canopy Gauss (PG) !"#$%&
'"())

60 238 1369
10 1 155

Max. dose Location [m] Ratio [-]
Release 
height [m]

Canopy Gauss (PG) !"#$%&
'"())

60 191 310
10 0.3 90
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Despite the different terrain parameterizations, all the three models were capable of

n Predicting more than 75% of the dose rates within a factor two

n Predicting the right order of magnitude of the dose rates

⇒ dose rates are robust quantities to estimate

⇒ interesting property for source inversion

Conclusions (1)
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An improved physical terrain parametrization can still be beneficial

n It reduces the bias and improves the variance prediction of the dose rates

n More important further downstream (>1 km): dose rates were not found to be 

more robust there than concentrations

n Factor 2 – 5 difference between canopy and open field

n Strong influence on the location and value of the max. concentration

n Important for licensing of nuclear installations

Conclusions (2)
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Thank you!
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