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Context

Context

| In case of an accidental release:

> A deterministic approach is used to
estimate the consequences
» Coupled to a practical method to
“encompass” uncertainties
e Anticipating wind direction changes,
e Using penalizing scenarios,
* Impacted zone of 360° in case of large
uncertainties (complex orography...)

7 To take into account the
uncertainties is crucial
2 To use probabilistic approaches

Predicted
contaminated
zone

Enlarged zone

Fukushima: no model
was able to predict
the north-western
deposition area !
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What are the uncertain input variables ?

| Deposition velocities and scavenging coefficients: 1 scalar per species

I Source term: release height, kinetics (emitted quantity as a function of time) for each species,
composition (isotopic ratios)

| Meteorological fields: Wind, rain, stability... 2D or 3D fields as a function of time
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72 Meteo and source term are the main sources of uncertainties
72 Complex structures, spatial and temporal correlations
7 How to determine a realistic distribution ?
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What is the influence of input variables ?

First step: global sensitivity analysis methods of Morris, Sobol
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Meteorological ensembles

How to quantify the uncertainty of data ?

> Using meteorological ensembles ensures physical consistency !

> Is the ensemble is representative of the uncertainties propagated in our model?
» Comparison to 10-m wind and rain observations (AMEDAS network)
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Meteorological ensembles

How to validate the input data uncertainties?

> Rank histogram

| The observations are often outside the
ensemble: the ensemble may under-estimate
the meteorological variability close to the
ground

| These ensemble are worth to be used for

uncertainty propagation
» The uncertainties may accumulate along the plume
trajectory
» The plume’s dispersion does not always depend on
near-ground variables
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Uncertainty propagation

Uncertainty propagation

I IRSN’s Gaussian puff model pX (Korsakissok et al, 2013)
| MRI ensemble

| Seven source terms from the literature

= Mathieu et al, 2012
= Terada et al, 2012

= Saunier et al, 2013

= Katata et al, 2015

= Stohl et al, 2011

= Winiarek et al, 2012
= Saunier et al, 2016

| No additional perturbation on source term
I No perturbation of physical parameterizations

| Comparison to gamma dose rate stations in the Fukushima
prefecture, and to 137Cs deposition measurements from airborne
measurement at the end of the emergency




Ensemble + 7 source terms

» Goal: to encompass gamma dose rate observations
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| The spread of the simulations ensemble is quite large compared to the observation variation. The
small variability of the meteorological data allows to create large variability in the dispersion results.

| These rank diagrams are obtained by using only the ensemble and 7 source terms, which means that
several uncertainties are not taken into account

72 Next step: full Monte Carlo with all uncertainties
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Monte Carlo simulations :

Perturbations of the input :

Variable Perturbation

Meteorological fields Draw between the member of the ensemble
Stability calculation method [Turner, LMO, Gradient]
Source term [Mathieu, Stohl, Terada, Katata, Winiarek, SaunierECMWF, SaunierMRI]
Source term amplitude LogNormal (x3,+ 3) at 95%
Source term time shift Normal (+3H, —3H) at 95%
Source term altitude Uniform [20,150] m
Dispersion method [Doury, Pasquill, Similarity]|
General deposition coefficient LogNormal [5x107%, 5x10~3] m.s~! at 95%
lodine deposition coefficient LogNormal [5x107%; 2x1072] m.s~! at 95%
Scavenging coefficient LogNormal [1x1075;5%1073] h.mm™1.s~! at 95%




Uncertainty propagation

Monte Carlo simulations

> Goal: to encompass gamma dose rate observations
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| The Monte Carlo results have a larger spread than the cross simulations
| Thereis a bias on the results, but it is quite correct for such simulations

| Several simulations are under all observations in the two ensembles :
» the inputs are over-dispersed
» Possibility of ensemble calibration
» A threshold on the observation limits the rank histogram
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Conclusion and perspectives

| Monte Carlo results
= The small variability of the meteorological data allows to create large variability in the
dispersion results
= The ensemble results are a bit over-dispersed but embrace the observations
= Importance of taking into account all uncertainties (Monte Carlo)

| Improvement of the results
= Calibration of the inputs uncertainties
= Taking into account the observation error

| Adaptation for operational purposes
= Forecast error (more than 24-hour forecast), a priori source term error, ...
= During an emergency , more uncertainties due to other factors (partial information, human
errors...)
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