

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

Surface-contaminated non-food goods in the Netherlands after distant nuclear accidents

Teun van Dillen Chris Twenhöfel Pieter Kwakman Harry Slaper

May 22, 2013 (NERIS, ConGoo workshop Madrid)

Project description

• Aim:

derive clearance levels for surface contamination after a nuclear accident

- Started in 2012
- Commissioned by the Dutch Ministry of Economic Affairs
- Aftermath of the Fukushima nuclear accident
- Conditions:

distant accidents: no unavoidable hazard by the discharges;

non-food items: packages, containers, conveyances consumer goods

Surface-contaminated non-food goods in NL| May 22, 2013 (NERIS, ConGoo, Madrid)

Work done, in progress and future plans

 Surface contamination limits in German Radiation Protection Ordinance (StrSchV, 2001, Column-4 values in Bq/cm²)

How were they derived? How should they be used? Can they be used within the framework of this project?

- Identify several categories of conveyances, (consumer) goods,...
- Draw up exposure scenarios for members of the public and workers
- Development of a dose quantification model for surface contamination (Sudoqu)
- Dose calculations (µSv/yr per Bq/cm²)
- Options for Dutch policy
- Derive operational levels for ambient dose rate (SurfRad)

German Radiation Protection Ordinance, 2001

• StrahlenSchutz Verordnung (StrSchV-2001), Appendix III, Table 1

BMU-2000-559

Origin of limiting values for surface contamination

- Brenk Systemplanung, BMU-2000-559;
- Covering scenarios (release + clearance);
- Pathways: external radiation, inhalation, ingestion and skin contamination
- Nuclidespecific;
- No radioactive decay;
- Includes scrap processing and clothing;

Schriftenreihe Reaktorsicherheit und Strahlenschutz Erschnisberichte

Untersuchungen, Studien, Gutachten

"Radiologische Bewertung einer Kontamination: Entscheidungshilfe zur Festlegung von flächenbezogenen Freigabewerten" und "Herleitung von Freigabewerten für flüssige Reststoffe" und "Abschätzung der durch Freigabe von Reststoffen und Abfällen verursachten Kollektivdosis"

Limiting values for surface contamination (Bq/cm²)

Nuclide	StrSchV-2001 (24/2/2012)						
	Column-4 value						
I-131	10						
Cs-134	1						
Cs-136	1						
Cs-137+	1						
Te-132+	1						
I-132	1						
Ba-140+	1						
La-140	1						
Co-60	1						
Sr-90+	1						
Y-90	100						
U-234	1						
Pu-239	0,1						
Am-241	0,1						
Cm-242	1						

Can these values be applied to:

Imported (consumer) goods with surface contamination?

Aspects to consider:

- -Exposure scenarios;
- -Dose criteria;
- -Practicality;
- -International harmonization;

SSK Recommendations , Fukushima accident

- Recommended level: **4 Bq/cm²** (only β/γ , no α -radiation)
 - ✓ passengers from Japan (freight, hand baggage, skin, garments)
 - ✓ Freight arriving from Japan
- Transport regulations (IAEA, ADR, SCO-I) (no distinction between fixed/non-fixed)
- Reference level: 1 mSv/yr (ICRP-103: emergency exposure situation);
- For the relevant mix of nuclides Nuclide-specific measurements not practical

QUESTION:

Can the Column-4-values be applied to imported (consumer) goods with surface contamination?

Aspects to consider:

- -Exposure scenarios;
- -Dose criteria;
- -Practicality;
- -International harmonization;

not based on consumer products different? not practical no

ANSWER:

Probably not

Transport items and imported goods:

• Category A: Transport items

- Freight containers
- Packages and packing material
- Conveyances: vehicles, vessels and aircrafts

• Category B: imported (consumer) goods and products

- Conveyances

- Furniture
- Clothes and textile
- Filters

- Toys

- Raw/base materials

- Electronics

- ...

To do: Draw up exposure scenarios for each item/product

- deterministic
- realistically conservative
- members of the public and (non-radiological) workers

Dose calculations with Sudoqu

- SUrface contamination-induced DOse: QUantification
- Includes: external radiation, inhalation, ingestion, skin contamination
- Nuclidespecific (start with most radiotoxic nuclides)
- Result: effective annual dose in µSv/yr per Bq/cm²

A A	B C	D	E	F	G	H	Ι	J	K	L	M	N	0	P	Q
DOSISBI	EREKENINGEN O	PPER	VLAK	TEBE	ESME	TTIN	GEN								
STAP 1:	Geef de verschillende nucliden op er	ı hun onderlir	ige verhoud	ling											
4															
NUCLIDE	AANDEEL	h(10)-broncons	tante		T_1/2		T1/2		T1/2		T1/2			
6		(S1	v.m2.Bq-1.h	-1)		(s)		(h)		(d)		(yr)			
7			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00		LEGENI	DA:
3			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00		In te voer	en waaro
			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00		-	
0			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00		Opgezoc	ite waar
1			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00			
2 Cs-137		1	9,30E-14			9,51E+08		2,64E+05		1,10E+04		3,02E+01		Uitgereke	nde waa
3 1-131		1	0,00E-14			6,95E+05		1,93E+02		8,04E+00		2,20E-02		D11 1 10	
4			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00		Bijschrift	
2			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00			
0			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00			
7			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00			
8			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00			
9			0,00E+00			0,00E+00		0,00E+00		0,00E+00		0,00E+00			
			0,002+00			0,000000		0,002+00		0,002+00		0,002+00			
	1 11 10 11 11 11 11 11		0,002100		10	0,00E+00		0,002100	D 117	D, DCC	-	0,002100			107
2 opmerking. deze s	sneet notaat geen resenting met ingri	bei van aocha	ers. Deze m	icnawn aus	2ey meen	emen. 01120	naering i	S CS-157 Ø	п Ба+15/т.	DeDCC	s voor es	-157 oevan	en cie o ijc	trage van B	u=137m.
3 STAP 2. 4	Coof do noow becauting on an hot	bermettinger	ireen												
s sint 2.	Geer de soort oesmetting aan, en nei	roesmettingsi	iiicau												
6 Soort besmetting	Onnervlaktehesmetting														
7	offering														
8 Geefvervolgens h	et totale besmetting aan van alle m	uclides samen			(pas op: v	ul slechts e	en van de	gele velde	n hieronde	r in!)					
10					u I										
0 C air			Ba/m3				mBa/m3			,	ntcroBa/i	m3	luchtbes	metting	
1 C area			Ba/m2				kBa/m2		4.00E+00		Ba/cm2		oppervis	aktebesmett	ing
2 C line			Ba/m				kBa/m				Ba/cm		liinbesm	etting	
3 C point			Ba				MBa				GBa		puntbro	n	
4													-		
5 STAP 3: 5	Specificeer de geometrie van opperv	laktebesmetti	ing							(dit is van	belang v	oor de bepal	ling van d	e geometris	che facto
6															
7 Alleen relevant vo	oor oppervlaktebesmettingen!														
38															
69 Geometrie	Cirkelvormig oppervlak														
10															
41															
12															

Under development

Options for Dutch policy (1)

Distant accident treated as a *planned* exposure situation:

Option: derivation of new nuclide specific clearance values

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \odot

 \bigcirc

- -Exposure scenarios:
- -Dose criteria:
- -Practicality:
- -International harmonization:

- based on consumer products
- 10 µSv/yr
- measurements, amount products
- NL-values only

Option: limiting values in Transport Regulations (4 Bq/cm² β / γ -nuclide)

- -Exposure scenarios:
- -Dose criteria:
- -Practicality:
- -International harmonization:

not based on consumer products

- > 10 μ Sv/yr is probable
- measurements, amount products
- ADR (European agreement)

Options for Dutch policy (2)

Distant accident treated as an *existing* exposure situation:

ICRP-103: reference level < 20 mSv

Suppose we use of a reference level of 1 mSv/yr

Assume multiple exposures (10 sources): 100 µSv/yr per product-type

Assume 4 Bq/cm² contamination (for β/γ -nuclides);

Make use of scenarios for transport and consumer products

Is effective dose < 100 μ Sv/yr under these conditions?

Options for Dutch policy (3)

Would this work?

IAEA TECDOC1449

	maximum dose to worker	Limiting value s	surface ci	ontaminatio	n (Bq/cm2) at dose constraint (mSv)
Nuclide	mSv/yr per Bq/cm2	0.01	0.1	1	
			\frown		
I-131	8.99 E-03	1.1	11.1	111.2	
Cs-134	2.00 E-02	0.5	5.0	50.0	IAEA-TECDOC-1449
Cs-136	2.20 E-02	0.5	4.5	45.5	
Cs-137	8.90 E-03	1.1	11.2	112.4	
I-132	2.28E-02	0.4	4.4	43.9	
Te-132	2.58 E-02	0.4	3.9	38.8	Radiological aspects of non-fixed contamination of
Ba-140	2.39 E-02	0.4	4.2	41.8	packages and conveyances
La-140	2.19E-02	0.5	4.6	45.7	Final report of a coordinated research project 2001–2002
Sr-90	9.51 E-03	1.1	10.5	105.2	
			\bigcirc		

For transport scenarios: yes

Operational levels for ambient dose rate

Screening levels for ambient dose rate

SurfRad: ambient dose rate from surface contamination levels for a given mix of radionuclides

1	Α	В		C	D	E F	Fractie	U	Е	r D		1	J
1	SCH	ATTING V	AN	DE DEPO	SITIE UI	F VERHOOG	voor middeling	DCC_sum	Fractie*DCC_sum		LSEI IIIIS IAD	Nuclide	Opp.besmetting
2	CONVE	RSIFFACTOREN	THESE	$N \to en H^*(10)$ stat		STAP-1							kBq/m^2
2			10331			51711-1)	0	0 0	1			0,00
3	Nuclide:	Aandeel	F1/2	Dochter	I BR I	T1/2, #1)	0	0 0	1			0,00
4	STAP-2	2		S		2	2 0,36363636	4 2,22E-	08 8,07273E-09	1		I-131	8,82
5		1	ıvt	nvt	nvt	nvt	0,18181818	2 2,99189E-	08 5,4398E-09	1		Cs-137	4,41
6	-	1	ıvt	nvt	nvt	nvt	2 0,36363636	4 1,31877E-	07 4,79553E-08			Te-132	8,82
7	I-131	2		694656 Xe-131	(5)	0 9891 nvt	> 0,09090909	1 1,18424E-	0/ 1,0/658E-08			Ba-140	2,20
8	Cs-137	1		951441120 Ba-137r	(-/ n	0.946)	0	0 0				0,00
9	Te-132	2		281520 L-132		1		0	0 0				0,00
10	Ba 140	0.5		1104970 L a 140		1		0	0 0				0,00
11	Da-140	0,5		1104970 La-140		1		0	0 0				0,00
11	-	1	IVI	nvt	IIVI	nvt	,	0	0 0				0,00
12	-	1	ivt	nvt	nvt	nvt		0	0 0				0,00
13	-	1	ivt	nvt	nvt	nvt	í.	0	0 0				0,00
14	_	1	ıvt	nvt	nvt	nvt	5	0	0 0				0.00
15	_	1	ıvt	nvt	nvt	nvt	Totaal		Gewogen DCC				TOTAAL
16	_	1	ıvt	nvt	nvt	nvt	5	1	7.22E-08	Sv/i per Ba/m^	2		24.25
17		1	ıvt	nvt	nvt	nvt		-	8,25E-03	nSv/h per Bq/m	^2		
18		1	ıvt	nvt	nvt	nvt							
19		1	ıvt	nvt	nvt	nvt	Verhoging stralin	osniveau	200	nSv/h	STAP-3		
20							, or noging out and		200		~		
20													

Under development